


We propose a synchronous scheme for passive-proactivased only on the raw pixel data as input with amazing
lane changing. performance.

According to the requirements of the lane change Especially recent work has shown incredible promise in
problem, we build a game theoretic deep Q-learnintghe proliferation of these methods to achieve control prob-
algorithm to help autonomous vehicles successfulllems. For example, [15] mapped raw RGB-D observations

complete lane change tasks. directly to torques in order to assist the learning of control
inputs for manipulation. Others have also extended the utility
Il. RELATED WORK of DRL by both improvements on the optimization process

[16] and designing neural network architectures [17]. As part

Traditionally, reinforcement learning (RL) has exclusivelyof the former effort, Bahdanau et al. [18] proposed an actor-
considered the optimization of single-agent policies in statigritic algorithm to generate sequences in natural language
environments. Unfortunately, the lane change task on roagrocessing (NLP) problems. So-called Deep Q-Networks
ways, along with many other tasks in this environmen{DQNs), named for their replacement of the Q function in
is a multi-agent participation process. One challenge th&L with a deep neural network, have even reached human-
arises as a result of this multi-agent RL (MARL) problem igevel performance on some video games [19]. Recently this
that the environment will become non-stationary, renderingias been extended to other problems via the AlphaGo [20]
algorithms seeking stationary solutions vulnerable to thraslnd AlphaGo Zero [21] frameworks.
ing. This is due to the fact that one agent's policy update \ery recently, Tampuu et al. [22] considered the two-
will be considered as the non-stationary disturbance of th@ayer pong game using DQN for learning collaborative
environment by other agents. To remedy this, one intuitivglaying strategies. Building on these successes, Jakob et
solution is to enforce that the current agent only conside{l. built a general decentralized multi-agent actor-critic al-
the other agents as part of the environment and use therithm calledcounterfactual multi-agen(COMA), which
single-agent RL method directly. For example, Tan et al. [&onsidered a centralized critic function [23] to approximate
analyzed the performance of collaboration vs. independeffe Q-function and subsequently optimize agent policies.
action in a mixed-agent scenario. Matignon et al. [7] showedOMA demonstrated impressive improvement of average
that in the uncoordinated case, independent learning resulisrformance when tested iBtarCraft unit micromanage-
in non-stationary and shadowed equilibria. However, thes@ent Meanwhile, Lowe et al. [24] proposed a general-
approaches generally result in the current agent not leverggarpose multi-agent learning algorithm by considering the
ing all prior information when in cooperative or competitiveone-to-one critic functions for each agent under the mixed
scenarios. cooperative-competitive environment. Their work only used

A signi cant amount of effort has been devoted to deteriocal information to handle cooperative, competitive, or
mining how best to optimize the value function approximamixed interaction behaviors of agents without assuming a
tion and how to overcome local minima or sluggish converdifferentiable model. Other recent works [25], [26], [27],
gence on the dynamic programming side of the problem. T@8] also considered these cooperative-agent problems in the
address this, Littman et al. [8], [9] proposed that Markowontext of RL.
games could be leveraged to address the MARL problem.

This minimax-Q algorithm focuses on the zero-sum game Il. METHODOLOGY
of the agents such that agents policies will converge to a In this section, we brie y review some background knowl-
xed,“safe” strategy. edge on the method that we will use.

Separately from MARL, recent advances in DRL have )
shown incredible utility on a variety of challenging RLA: Single-agent RL
problems. DRL is an extension to classical reinforcement In the standard single-agent RL setting, one agent interacts
learning where the policy, value function and/or underlyingvith the environment over discrete times. At tinie the
model are replaced with a deep neural network. This meth@djent observes the statg 2 S and executes the action
has been applied to many different problems, including opte; 2 A based on certain policy : S ! PD(A) where
mizing dialogue management [10], governing a quadrupedBID () represents the probability distribution over a certain
trot gait [11], and designing a controller for helicopter withspace. The environment then transits to the next state
inverted ight [12]. At the core of these methods is deepP (jst;a;) through transition functio® : S A! PD(S),
learning (DL) [13], i.e. the use of deep neural network@nd the agent attains a reward: S A ! R. Given an
as data-driven high dimensional function approximationsnpitial states at timet, we aimF;o nd a policy to maximize
which have provided a computational method to represettie expected total rewards[ Lot Kreskjse = s] with a
functions with a controllable complexity. Introducing DL discount factor 2 (0;1). There are two general approaches
into reinforcement learning has generally provided greatdo solving a RL problem: policy optimization and dynamic
exibility for the decision-making process and improvedprogramming.
computational ef ciency through the leveraging of graphical 1) Policy Optimization: This approach tries to
processing units (GPUs). For example, Mnih et al.[14] shownd the optimal policy through direct searching or
that deep Q-learning can be applied play Atari 2600 game®lving the corresponding optimization problem. For



instance, policy gradient method considers a class & this paper, we will use a two-agent Markov game to model

polices = (gs; ) that are parameterized by. the lane change problem, solve the resulting game based on
Denoted the total discounted reward unger the policthe deep Q-learning method.
with parameter by J() = E [ o 'rel,

where p( ; ) is the distribution over the trajectory IV. L ANE CHANGE PROBLEM

2 (So;@0;r0;S1;a1;r1; ). We can update and nd the The lane change problem has received lots of research;
optimal  (i.e., the optimal policy) by the gradient method;Se€, €.9., [31] that investigates how to adjust the actions in an
see, e.g., [29], [30], [15]. In particular, the REINFORCEaggressive lane-change situation to improve the trafc ow,
algorithm[29] uses the sample of trajectory directly td32] that introduces an integrated model to jointly consider
update . To address the high variance brought by théhe mandatory and discretionary lane-change behaviors, and
direct use of the gradient J( ), Vanilla REINFORCE [33] that proposes a data-driven model to simulate the lane

intrﬁguces Ignbiased baselirs;) such thatr J{ ) = change process. In this paper, we will study the collaborative
E tTZO tTO:t £0 tro b(s) r log (ajs) has lane change in a system of autonomous vehicles. We assume

; that each vehicle can observe the states of other vehicles with
low variance [30].

2) Dynamic Programming:We will use one of the bounded errors, but no vehicle is at a position to (globally)

dynamic programming approaches — Q-learning me,[hO((‘]oordinate the lane change process. Instead, the vehicles will
(Watkins, 1989) and its variants IIB this paper. To maximizecooperatively carry out the lane change through playing an

g : _ Tt k e = o equivalent Markov game.
the state-value functiolf (s) = E[ = “reridst =s; | As shown in Fig. , we consider a simpli ed while realistic

with the initial states at time t, we de ne action-state X :
. N Tt ok . _ . _7_"7 lane change setting, wheoar0 sends the signal to change
value functionQ (s;a) = E[ ., “re+«jst = s;a = . - e
i i . o its lane into lane-3¢ar2 responds to this signal to create the
a; ]. Then for any(s;a) 2 S A, a policy  maximiz- . . . .
. i L : merging space, and other neighboring vehicles are assumed
ing Q (s;a) also maximizesv . Furthermore, the optimal . :
) . . : to be not responsive (NR) to the signal. The lane change
Q (st; &) satis es the followingBellman equation : . :
process includes an adjustment stage and a merging stage.
Q (sa)=ri+ Ea, 5., Q (St+1;a+1); (1) During the adjustment stagearO will keep adjusting its
Cposition and speed waiting for the merging moment, while
car2is adjusting its position and speed to create the merging
space. When the adjustment is nishezhrO will take the
Qua(sa) = (1 )Qi(si;a) merging action to complete the lane change process.
+ (fre+ Qi (st+1))] (2 The above lane change setting results in a proactive-
passive system with one proactive agesdr(), one passive

under certain condition [5]. a .
. , gent €ar2), and one reference agentafl); see Table.
Mnih et al. recently developed deep Q-learning [14], [19]We empower the vehicles with RL to guide their actions,

that integrates neural networks with Q-learning method. Th%r instance, when the proactive agent switches from the

introduced the approximatio (s;a) Q(s;a ) includ- adiustment stage to the meraing stage
ing additional replay buffer and target neural network. At ) g ging stage.

which can be solved iteratively with certain deterministi
function :S! A according to

training iterationi with current states;, the objective is min- Characters Purpose Examples
imizing the loss functiorL;( i) = Es [(yi Q(st;a; 1))?] Reference agen NR carl
with vi = E [r +  max Q(S ‘ar )] and the Proactive agent| Learn to take actions to merge car0

Yi . Str1 L1t a t+l, S 0 10 , Passive agent | Learn to create merging space car2
stochastic gradient descent is used to update neural network—Giners NR car3, card, cars

weights ; where the gradient is given b
gnts i 9 9 y TABLE I: Vehicle roles

roLiC)=Elre+ maxQ(sasa i 1) Q(st;a i)
cae A Speci cally, the set of agentdl = f1;2g corresponding
r Qs a; i)l 3) , : ,
to the proactive and passive agents/vehicles. The state at
B. Markov Game time t is denoted bys; = (sf)kan , With s = (x;yK; vE)
A Markov game [8], also called stochastic game, isvhere (xf;yf) denotes the 2D position/coordinate and
dened as fN :S:;(AM)ian 1P (r¥)kan :( F)kan g where VK the linear velocity of agenk. At time t, vehicle

N = f1; :ngis the set of agentsS the set of states, k's action is denoted byaf = (s;u), where s 2
AX the set of actions available for agekt P : S f1 (acceleration); 0 (keep; 1 (deceleration)g andu 2
Al A" I PD(S) the state transition function, f1 (veer left);0 (keep; 1 (veer right)g. The basic
rk:s Al A" I R the agenk's reward function, actions include acceleratidfh; 0), deceleratiorf 1;0), keep

and X :S! PD(AK) the agenk's policy. Each agenk  (0;0), veer-left (0;1), and veer-right(0; 1). We assume
aims to maximize its expected discounted total rewards witiat merging action is either veer-left or veer-right. Since we

the starting stats at timet, focus on the proper stage-switching moment, the vehicle will
¥t # keep on its lane before that and the basic operations include
Vi(s)= E kst = st Fean (4) speed up and slow down. When the merging con guration

i=0 is reached, the proactive vehicle takes the merging action.



As for the state dynamics of the vehicle, we usedbable Algorithm 1 Deep Q-learning algorithm [14]

integrator model: 1: Initialization of Q(s;a; ) and the replay buffeD.
K K 2: for episodel : M do
zf:l = é i ztk + 2 u(af) t+"; (5) 3 Randomly choose a starting stae
t+1 t
4: for t =1,; ;T do
whereuk (af) speci es the input magnitude upon actiafi 5: Choose actiora; = argmax, Q(st;a; ) with
and"; is the disturbance. The transition functionsis; probabilityl . Otherwise, make a random choice.
P(jst; (al;a?)) follows from the above dynamics. 6: Take action a; in simulator and add
The reward function is built by considering the possible  (st;a;;r¢;St+1 ) to the replay buffer.
risks and state changes, as follows: 7 Take a samplégs; a;r;s% from D.
8 Ky . 8: Update neural network by r L()
%d'St(yt)’ _tht_arW|se. wherey = r+ maxpoQ(s®a® ) ory = r if the
X (sq: (ks a2)) = 2i. !deISt(y{‘)J <; > 0  process is terminated.
320, if success o: end for
" 10 if collision; 10: end for

where, based on the lane change setting in Fig.

H 1y — i 1 2. 1 gecarl.
dist(y) = caminfy; yp'%0g c;maxfy; yi™ " 0g k= kgi. 1 is the strategy of agerit, rk(s; (al; a?))

1 3. - H 2 — 2
Esc;PlaXf i oy 1092 and d'it(yt) = j“ maxf yf( is the reward function of agemt and P ( js; (al;a?)) is the
Vi 09  csmaxfyf oy 0g, VY'th Yo = W transition function.
deate 5 Y¢ = ¥ + dsate - Here, dsare is the safe distance At time t, agentk obseves stats;, takes actiona

between vehiclesg; are weights to trade off among risks, k(js;) according to its strategy* consisting of the policies
and > Qis a certain threshold to mark the expected zone ork ' ang receives the reward (s;; (al; a2)), while the state
not. The proactive and passive agents/vehicles will learnthe | p(js;; (al;a?)). In Markov game, the agents will
optimal policy ¥(js) that maximizes the total discounted agjust their strategies to reach an Nash equilibrium.

reward to guide the lane change. Notice that the reward of pe pition 2: A Nash equilibrium of two-agent Markov
each agent depends on the state (and thus action) of @ﬁmeG is a pair of strategy * ; ! ) such thaBs2 S,

other agent, which effectively leads to a strategic interaction

among the agents and allows to study the cooperative lane Visit; 2) vigh ?2)8 Y (6)
change using the Markov game framework. V2(si 1: 2) Vsl ?);8 2 @)
V. LANE CHANGE SCHEMES whereVK is the state value function de ned by equatic:). (

In the section, we consider two lane change schemes basedVe see that at a Nash equilibrium each agent's strategy is
on RL. In the rst one (called asynchronous scheme), eadhe best response to the other's strategy. We consider only
vehicle treats the other vehicle as part of the environmestationary strategies, and the existence of Nash equilibrium
and carries out RL as in the standard single-agent Ris ensured by the following theorem.
setting. Such a scheme often leads to vehicle collision, which Theorem 3:(Filar and Vrieze [34], Theorem 4.6.4) A
motivates us to consider another scheme (called synchronddarkov game with stationary strategy has at least one Nash
scheme) where vehicles carry out RL to solve for thequilibrium.
resulting Markov game. This scheme takes into consideration Further, consider the optimal action-state function
the strategic behavior (being reward maximizer) of other K o k1. 2
vehicles, and leads to safe lane change. Q" (si: (ar;ap)) = re(se;(ap;ap))+
A. Asynchronous scheme Baty 1ty 2 me Q@ (Si(@ha el ) (8)

Each vehicle considers all other vehicles as part of thEhe agentk will take action based on ¥(s;) and
environment, and carries out (single-agent) Deep Q-learnif@* (s; (al;a?)) at each timet, which leads to a bimatrix
as in Algorithm . As each vehicle's action does not takegame.
into account the strategic behavior of the other vehicle, the De nition 4: A bimatrix game is dened as
asynchronous scheme may lead to vehicle collision. This B ; (M )ion ;( “)kon 9, Where the set of agents
con rmed by the experiments; see Section VI. N = f1,2g, payoff (M*)on are jAYj j A% matrices
with the (i;j )-th entry M (i;j ) = Q% (s; (af;a?)), and
B. Synchronous scheme k is the strategy of agenk. The mixed strategy Nash

Motivated by [9][8], we use Markov game to model andequilibrium of this bimatrix game is a pair of probabilities

guide the lane process. (1, 2) satisfying
De nition 1: A two-agent Markov game is de ned as 11 2 1r1 o 1 1
G:= N ;S;(A¥)kan i Pi(r¥)kan 3 ( ¥kan @, whereN = M M® =8 “2PD(AY); ©)

f1;2g, S and(AX)on are the state space and action spaces, 1m2 2 1' M2 2:8 22 PD(A?): (10)



By modeling each decision making step as a bimatrief the bimatrix gameQ¥(s;; ¥) is the vehiclek's Q-values
game, the whole Markov game consists of a sequenemd QN (s;; ) is the estimate of the other vehicle's Q-
of bimatrix games. Theorem 3 of [9] ensures that thealues.QN(s;; ) can be build by neural network and the
Nash equilibrium ( ‘(s;); 2(st)) of the bimatrix game data (e.g.r} © or s, or QN =(s; N=K)) sent by the other
(QY(st); Q?(st)) is also part of the Nash equilbrium of the vehicleN =k. Based on the received datacan be updated
whole Markov game. If ¥ = f X (s))g.;. s; is the using the gradient method or replaced by the received value
Nash equilibrium of the Markov gam@, then there exists of QN =k(s;; N ) value. In our experiments, we use the
one( ! (s%; 2 (sY) that is also the Nash equilibrium of receivedQN =*(s;; N=¥) from the other vehicle.

i i 1 eY4 H - <0
the bimatrix gamgQ-(st); Q<(st)) with s; = s°. The state C. Convergence of Algorithr

function valueVk(sj 1 ; 2) = 1 (s)QX (s) %(s) with
the starting stats, and the action-state function valus) s Based on [9], the following theorem ensures the conver-
given by gence of the algorithm:.
K 12Ny — K 1.2 Theorem 5:(Theorem 4 in [9]) Given a Markov game
Q" (si;(ar;ap)) = re(se; (a;ap))+ G:= N ;S; (A% ;P (rkan 5 ( X)kaon g as in De ni-

Es., [V¥(sts2] Y5 2)]:  (11) tion . If we take the iterative update {) through Algorithm

L N
After taking actiorak k(s), the updated payoff matrix - it will converge to the Nash equilibriuth * ; <) of G.

will be the Nash equilibrium( (si+1); 2(St+1)) of the ) Proof:lB); the Conditional I(AveragilngzLemma ir; [35],
bimatrix game(Q(si+1 ); Q?(st+1)) instead of independent Qt+11 (st; (atk;at ) = 2(1 Qi (s (a;a0)) +  ofre +
update [9], (St+1) Q¢ (St+1) “(St+1)] will converge to
KAK (e - (Al
Qi (si(@ha)) =1 )Qi(sii(a%a?) e (S;’(a‘l’a‘z» .
— 1 2
+oalrfa v H(se)Qf (st1) Z(sea )l (12) - )E<5t+1 [re + | (S:rlet (k5t+1) l(5t+1 )] k ) 13)
Notice that the Q-values with different state-action pairs = P(stsajsi; (g a))lre + “(st+2)Qp(Ste1) “(St+a)]
are dif cult to calculate directly. Instead, we can use neural &
network as the estimator of the Q-tab@*(s) QX(s; ). = P(st+1ist; (@t a2)) T QX (st);

This leads to the Algorithm:. St+1

where TKQ*(st) = rf +  (St41)Qf(St+1) *(St+1). By
Theorem in the Appendix,T¥ is a contraction mapping,

Algorithm 2 Deep bimatrix Q-learning for vehiclle

1: Build neural network®Q*(; *) with output sizgA,] and so isTX. So the update () will converge to a xed
jA2j and replay buffeD. point of Tk.
2: Build the initial QN =¢( ; ) for the other vehicle. m
3: for episodel : M do
4: Vehicle k chooses a starting stas§ randomly. V1. EXPERIMENTS AND EVALUATIONS
5: fort=1; T do A. Testbed
6: Calculateq (sy); ?(st)). In order to test this method we use a physics engine-based
7 Two vehicles reactf *(s;); 2(st)) consensus. [36] high- delity model of a four wheel drive,%th scale
8: Chooses action by*(s) with probabilityl .  vehicle. The dynamics of the system are given as:
Otherwise, vehicl&k chooses action randomly.
9: 1Ta;«e kactions in the simulator and add x%t) = (x();F (t);u(t);p): (14)
si; (ap;a0);rf; into replay bufferD. _ ) ) ) )
10: (S (& W{?\i}e é)nsgin)inibatchpsa)r/nple fror® do in which () is theo dynamlcal ”?Od_e'x () 2 R" is the
11 For each(s; (a'; a2): r*; s9 in the minibatch, state qf the systenx (t) is the derlvatlvg .of the sta_t(E (1)
calculate targey* as follows consolidates external forces and coII|S|ons.appI|ed to the
system from e.g. the road surfaag(t) 2 R™ is a control
ok 1(SHQK(S® k) 2(sY; not terminated  input vector including steering and acceleration signals, and
y = rk- terminated p 2 RY is model parameter vector to be calibrated. In order
to simulate simulated the behavior of a physical system,
12: Use stochastic gradient descent to upddte we calibrate model parametepsto the physical platform
with the cost function(y* Q¥ (s;(a';a?); *))2. by using an online calibration algorithm [37]. By achieving
13: UpdateQ{\l :k(s; ). low uncertainty on model parameters, it is observed that the
14: end while simulated vehicle can exhibit virtually identical behavior as
15: end for the actual vehicle.
16: end for By providing the actions based on learned policié$s;)

for multiple simulated vehicles and stepping the simulator
Here( (st); ?(st)) is the mixture Nash equilibrium of forward, state updates can be obtained and update the ob-
bimatrix game(QX (s¢; *); QN (s¢; )). We apply Lemke- servations;+; , which then propagate Q-value updates from
Howson algorithm to caculate the mixture Nash equilibriuniEq. ( ) leading to direct policy updates via Algorithm






different training episodes are provided { schemdink and 1) If ( 1(s); i(s)) and ( to(s); 2(9)) are social opti-

schemdink). These results suggest that the synchronousal: we have 1 (s)QX (s) 2(s) L1(s)QX (s) 2(s), so

cooperative scheme has potential to assist autonomous Weat

Rzilr?iig;n nishing maneuvers strategically after suf cient ThQK(s) TkaO(s)
' 1 k 2 1 KO 2

VIl. CONCLUSIONS ( *(s)Q%(s) “(s) (5)Q" (s) “(9))

In our paper, we have introduced the proactive-passive k H(s)kkQ  (s)  Q“(s)kk *(s)k
pair of vehicles with one reference vehicle as the lanRotice that 2 (0;1) and k 1°(s)k 2 [0;1];k ZO(S)k 2
change structure. Because the non-coordination scheme fof1]. SoT* is a contraction mapping.
lane change task does not give the expected performancep) If ( 1(s); 2(s)) and ( 10(5); 2(s)) are not social
we propose a scheme considering Deep Q-learning ag@timal: We consider different agents separately:
the Markov game together. The resulting performance on gq, agent-1. Ag 10(3); 20(5)) is a Nash equilibrium,
the physics engine based high delity model shows that e nhave 1°(s)Q1°(s) 20(5) 1(s)Q1°(s) 20(3)_
the proposed scheme allows the vehicles reach the proper Thus,
merging con guration starting from different states. This 1 )
scheme could be used to build the model-free controller to T°Q(s) T°Q (s
help autonomous vehicles nish tasks after training. In the ( 1(s)QY(s) %(s) 1(s)Q10(s) 2°(s));
future, we are going to consider how to improve the training

. N . . .
process so that it can avoid obvious dangerous behaviors.  SiNc€( “(s); *(s)) is not social optimal, agent-1 will

receive higher payoff for any other policies of the agent-

APPENDIX 2, which means
To prove Theoreri, we have the following assumptions 1 1 2 1 1 20, .
and result 5 (s)Q7(s) “(s) (s)Q7(s) “(s):
A$umption 6:The learning rates ; satisfy |, { = Thus,
1;  ¢f<1. 141 1~1°
Assumption 7:(Assumption 1 in [9]) Given a bimatrix TQ(s) T°Q(9) . .
game (Q*(s); Q?(s)), its mixture Nash equilibrium is a ( 19)Qs) %(s)  *s)Q(s) Z(9)
pair of probabilities{ ' ; 2 ) satis es one of the following ( 1(s)QYs) 2(s)  Ls)QY(s) 2(s))
properties: K (S )KKOK® Clevkk 2(s)k:
1) Propertyl: The equilibrium is social optimal: (S)kkQ™(s) Q7 (s) (S)k:
1k 2 1Qk 2.8 12 PD(AY): 22 PD(A?): For agent-2. Similarly, We have
0
2) Property2: The equilibrium is not social optimal: T?Q%(s) T?Q%(9) . .
1 k 2 1 2 2
1Qt 2 1.Ql 2.8 22 PD(A?); ( 1§S)Q 2(S) 2(S) 10(S)Q20(S) 2(S))
1g2 2 1g? 2,5 12 pp(Al); ("(9Q%s) (5 T(9Q%(9) (s)

0 0 0
Assumption 8:(Assumption 2 in [38]) For all bimatrix k T()kkQ (s) Q" (s)kk *(s)k:
game(Q{(s); Q?(s)) in the Markov gameG at timet, they e see thalT is a contraction mapping. (]
should all satisfy Property 1 in Assumpticnor all satisfy
Property 2 in Assumptior:.
With these assumptions, we can prove that the Q valuéll G.-L. Chang and Y.-M. Kao, “An empirical investigation of macro-

; : ; ; scopic lane-changing characteristics on uncongested multilane free-
Update operation Is a contraction mapping, ways,” Transportation Research Part A: Generabol. 25, no. 6, pp.
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